COMMUNICABLE DISEASE CENTER

 Morbidity

 Morbidity

 Mart Mortality

 Mart Mortality}

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public health service

CURRENT TRENDS - MEASLES 1966

CONTENTS
A total of 1,472 cases was reported for the 48 th week ending (December 3), an increase of 522 cases from the total of the previous week and a decrease of 1,158 from the total of 2,630 reported for the 48 th week in 1965 . The three states reporting the highest numbers of cases for the 48th week are Texas with 318 , Washington with 198 , and Oregon with 125 . Six states reported no measles activity. Twenty states notified at least one but less than 10 cases.

Figure 1 represents the reported cases of measles for the current epidemiological year (beginning with week 41) in comparison with the same period during the previous 4 years.
(Continued on page 414)

CURRENT TRENDS - MEASLES 1966

(Continued from front page)

The number of cases reported each week in 1966 has to date been consistently less than the totals reported for the comparable weeks in past years. The increased total reported for the 48 th week reflects the expected increased seasonal incidence.

The counties reporting the highest numbers of measles cases for October 15 through November 26 are listed in Table 1. Inclusion in this table is dependent upon the number of cases occurring for two consecutive weeks and upon county population. An asterisk indicates the introduction of epidemic control measures or community immunization programs in the county.
(Reported by Childhood Viral Diseases Unit, Epidemiology Branch, CDC.)

Allegheny County, Pennsylvania

In a county-wide measles program held in Allegheny County, Pennsylvania, on December 4, 1966, an estimated 75 percent of the susceptible children (approximately 52,000) in the age group 1 through 8 years were immunized. An additional 1,700 children 9 years of age and over also received the live attenuated measles vaccine. The 57 immunization clinics located throughout the County (which
includes Pittsburgh) were operated by physicians, nurses, and other volunteers. The community program was sponsored by the Allegheny County Medical Society and the Allegheny County Medical Society Foundation in cooperation with the Allegheny County Health Department.
(Reported by Dr. F.B. Clack, Acting Administrator, Allegheny County Health Department; and Dr. W.D. Schrack, Jr., Director, Division of Communicable Diseases and State Epidemiologist, Pennsylvania Department of Health.)

Durham County, North Carolina

Since November 1, 1966, 75 cases of measles have been reported to the North Carolina State Board of Health from Durham County (Pop. 118,000). Results of a school survey conducted in this County during the last week of November indicated that since mid-October, 115 cases of school absenteeism due to measles had occurred. Ninetyfive cases were from 9 of the 15 city schools and 50 of these cases were concentrated in 2 schools. The remaining 20 cases were in 6 of the 13 county schools, with 11 of these cases in one school. The last major outbreak of measles in Durham County was in 1961.

CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
(Cumulative totals include revised and delayed reports through previous weeks)

DISEASE	48th WEEK ENDED		MEDIAN$1961-1965$	CUMULATIVE, FIRST 48 WEEKS		
	$\begin{gathered} \text { DECEMBER 3, } \\ 1966 \end{gathered}$	DECEMBER 4, 1965		1966	1965	$\begin{aligned} & \text { MEDIAN } \\ & 1961-1965 \end{aligned}$
Aseptic meningitis	52	47	39	2,781	1,999	2.003
Brucellosis.	12	(2) (a) ${ }^{1}$	7	224	224	362
Diphtheria.	-	5) ${ }^{\text {a }}$ -	5	182	147	251
Encephalitis, primary:						
Arthropod-borne \& unspecified	37	30	---	1,999	1.775	
Encephalitis, post-infectious	11	8 \%	-	677	618	
Hepatitis, serum ...	35			1,344		39,642
Hepatitis, infectious	733		751	29,806	\{31,175	39,642
Measles (rubeola)	1,472	2,634	2,634	197,830	253,379	405,590
Poliomyelitis, Total (including unspecified)	3		5	93	56	417
Paralytic	3	-	5	88	42	358
Nonparalytic	-	-	--.	-	9	
Meningococcal infections, Total	48	69	41	3.178	2.801	2,165
Civilian	46	62		2,873	2,600	
Military	2	7	...	305	201	
Rubella (German measles)	376			44,495	-.	
Streptococcal sore throat \& Scarlet fever . .	9,107	8,230	6,331	385,685	358,625	309.615
Tetanus.	9	7		184	259	
Tularemia	2	-	--'	162	230	499
Typhoid fever	6	15	11	354	422	499
Typhus, tick-bome (Rky. Mt. Spotted fever).	-	2	-.	242	260	
Rabies in Animals.	69	77	61	3.732	3.979	3.477

NOTIFIABLE DISEASES OF LOW FREQUENCY

	Cum.		Cum.
Anthrax:	6	Botulism:	10
Leptospirosis: Wash-1, Puerto Rico-1	63	Trichinosis: Calif-1, N.J.-3	94
Malaria: Calif-4, La-1, Md-1, Miss-1, NC-3, Ohio-1, Pa-4, Utah-1	456	Rabies in Man:	1
Psittacosis: .	44	Rubella, Congenital Syndrome: Minn-2	23
Typhus, murine:	26	Plague:	5

Table I
Counties Reporting Highest Number of Measles Cases

County \dagger	State	Pop (000) (1960 Census)	Number of Measles Cases for Week Ending						
			October			November			
			15	22	29	5	12	19	26
II King	Washington	935	15	17	6	41	6	48	38
III Spokane	Washington	278	19	14	23	42	24	60	14
Snohomish	Washington	172	71	55	95	60	3	89	25^{*}
Galveston	Texas	140	24	59	16	9	-	12	2
IV Washington	Oregon	92	-	-	10	12	69	56	65^{*}
Rutland	Vermont	47	25	12	14	5*	4	13	1
Brown	Texas	25	-	-	1	3	-	17	13
Parker	Texas	23	2	11	-	18	-	27	13
Red River	Texas	16	2	2	-	-	14	11	26
Richardson	Nebraska	14	-	-	-	8	41	18	7
McHenry	North Dakota	11	3	21	14	-	10	-	1

* Epidemic control measures or community immunization programs instituted.
\dagger Criteria for listing counties:
I. 25 cases/week for 2 consecutive weeks in a county with at least $1,000,000$ population (none listed).
II. 20 cases/week for 2 consecutive weeks in a county with 500,000 to 999,999 population.
III. 15 cases/week for 2 consecutive weeks in a county with 100,000-499,999 population.
IV. 10 cases/week for 2 consecutive weeks in a county with less than 100,000 population.

Since June 1966, the Durham County Health Department had administered about 1,300 doses of measles vaccine, of which 700 doses have been given in November. Television, radio, and the newspapers have publicized the epidemic and have urged that all unimmunized children in
the County receive measles vaccine at the county health clinics.
(Reported by Dr. O.L. Ader, Durham County Health Director, Durham, North Carolina.)

EPIDEMIOLOGIC NOTES AND REPORTS

 SALMONELLOSIS ASSOCIATED VIITH CARMINE DYESince the outbreak of salmonellosis traced to contaminated carmine dye in a Massachusetts hospital (MMWR, Vol. 15, No. 33), additional outbreaks have been uncovered in hospitals in California, Ohio, Oregon, and in Exeter, England. Investigation to date has established that 27 primary and 6 secondary cases of Salmonella cubana infection are related to contaminated dye. The cases have occurred in patients hospitalized for diagnostic studies; carmine dye is used for investigation of gastrointestinal disease. It is also extensively used as a coloring agent in foods, drugs and cosmetics.

The dye, which is manufactured in the United States, France, England, and Germany, is made from insects of the species Dactylopius coccus, also known as Coccus cacti, imported from the Canary Islands and Peru. Numerous lots of the dye have been examined by the U.S. Food and Drug Administration, the Communicable Disease Center, and several state public health laboratories; many were found positive for S. cubana. In addition, at $\mathrm{C}_{\text {ast }}$ one shipment of the insects from both Peru and the Canary Islands have been found positive for S. cubana.

Since carmine is a natural rather than a synthetic dye, it is not subject to FDA color certification and is not required to be specifically listed on food or drug labels. The dye is used as a pharmaceutical color for tablet capsules and coatings, suspensions, and syrups. In foods it may be used in candies, chewing gum, preservatives, seasonings, ice cream, tomato extracts, and many other products. Sampling of products containing carmine dye led to the discovery that several brands of candy and a meat preservative were positive for S. cubana. No contamination of drugs or cosmetics has yet been reported. All of the contaminated products, including the dye, have been removed from the market.

The only cases of human illness traced to contaminated carmine dye have been in patients hospitalized for gastrointestinal diagnostic tests. Although it appears that the insects are the contaminating vehicle, specific details about the original contamination of the dye are not available at this time.
(Reported by the Salmonella Unit, Bacteriology Section, Epidemiology Branch, CDC.)

RECOMmENDATION OF THE PUBLIC HEALTH SERVICE ADVISORY COMMITTEE ON IMMUNIZATION PRACTICES

The Public Health Service Advisory Committee on Immunization Practices meeting on October 11, 1966, issued the following recommendations on diphtheria, tetanus, and pertussis vaccination practices and tetanus prophylaxis in wound management for the United States.

DIPHTHERIA, TETANUS, AND PERTUSSIS VACCINES

TETANUS PROPHYLAXIS IN WOUND MANAGEMENT

Introduction

Routine immunization against diphtheria, tetanus, and pertussis during infancy and childhood has been widely advocated and generally practiced in the United States during the past 20 years. The effectiveness of these programs is reflected in the decreasing incidence and mortality due to these diseases. The following recommendations regarding immunization have been developed on the basis of this experience and accumulated epidemiologic and immunologic data.

Diphtheria

There has been an accelerated decline in the annual incidence of diphtheria since the end of World War II, and diphtheria is now a rare disease in many areas of the United States. In 1965, fewer than 175 cases were reported. However, localized outbreaks continue to appear, accompanied by serious complications and a case-fatality ratio often greater than 10 percent.

The great majority of cases occur in inadequately immunized individuals. Although most diphtheria is in children, cases and deaths occur in all age groups. Diphtheria toxoid, when administered according to recommended schedules, prevents deaths and greatly reduces clinical illness and complications. Following adequate immunization, protective levels of antitoxin have been observed to persist for 10 years or more.

Tetanus

Although its incidence in the United States has declined in recent years, tetanus remains an important public health problem which can only be eliminated through universal active immunization. In 1964, nearly 300 cases of tetanus were reported, the majority in unimmunized adults. Of these, 180 died, a death to case ratio of more than 60 percent. Adequate immunization with tetanus toxoid provides effective and durable protection against the disease. Furthermore, prior active immunization eliminates the need for passive therapy at the time of injury, thus preventing the considerable morbidity resulting from use of heterologous animal serum. In addition, universal active immunization will prevent the significant proportion of cases occurring after trivial injury or with unrecognized portals of entry. Other benefits include the prevention of neonatal tetanus and protection to individuals in various high risk groups.

Tetanus toxoid is highly effective and almost completely free of side effects. Since it also provides longlasting protection, it is an almost ideal immunizing agent. Because there is no natural immunity to tetanus, no general contraindications to tetanus toxoid, and since the organism is ubiquitous, the need for immunization is universal.

Portussis

Pertussis with its associated high mortality is the major rationale for DTP immunization in early infancy. The disease is highly communicable, with attack rates up to 90 percent among unimmunized household contacts. Most cases are reported in infants and young children. In 1964, nearly three-fourths of pertussis deaths occurred in those under age one - some 40 percent of the total number in infants three months of age or younger. Immunization is very effective in reducing both incidence and case fatality. The mortality rate has declined precipitously since the widespread use of standardized pertussis vaccines beginning in the mid 1940's. Since the incidence and mortality decrease with age, while local and systemic reactions to the vaccine increase, pertussis immunization is not recommended above the age of six years.

Preparations Used for Immunization

Diphtheria and tetanus toxoids are prepared by formaldehyde treatment of the respective toxins. Pertussis vaccine is made from a killed bacterial suspension or a bacterial fraction. The toxoids and pertussis vaccines are available in both fluid and adsorbed forms. Comparative tests have shown that the adsorbed toxoids are clearly superior in antibody titer produced and in the durability of protection achieved. The promptness of antibody responses following the administration of either fluid or adsorbed toxoids as boosters is not sufficiently different to be of clinical importance. Therefore, adsorbed toxoids are the agents of choice for all primary and booster immunization.

These antigens are available in various combinations and concentrations for specific purposes. Three antigens are important for public health use:

1) Diphtheria and Tetanus Toxoids and Pertussis Vaccine (DTP)
2) Tetanus and Diphtheria Toxoids, Adult Type (Td)
3) Tetanus Toxoid (T)

All preparations contain comparable amounts of tetanus toxoid, but the diphtheria component in the adult type of tetanus and diphtheria toxoids (Td) is only about 10 percent of that contained in the standard DTP preparation used in infants and young children.

Dosage

Since the antigen concentration varies in different products, the manufacturers' package inserts provide specific information regarding the volume of single doses.

Schedules

Recommendations regarding usage of these vaccines is based upon immunologic and epidemiologic considerations, taking into account the special circumstances of school entrance and other factors important in disease transmission.

Primary Immunization

Children 2 months through 6 years (Ideally beginning at age 2-3 months or at the time of a 6 -week "check-up" if such timing is an established routine.)

DTP - The recommended single dose given intramuscularly on three occasions at 4-6 week intervals with a reinforcing dose approximately one year after the third injection.

Adults and children over 6 years

Td* - The recommended single dose given intramuscularly or subcutaneously on two occasions at 4-6 week intervals with a reinforcing dose approximately one year after the second.

Booster Immunization

Children 3 through 6 years, (Preferably at time of school entrance, kindergarten or elementary school.)

DTP - The recommended single dose intramuscularly.
Thereafter and for all other individuals
Td* - The recommended single dose intramuscularly or subcutaneously every 10 years. (When administered as part of wound management-see specific

[^0]recommendations - a 10 -year interval is determined from that date). More frequent routine booster doses are not indicated and may be associated with increased reactions.

Tetanus Prophylaxis in Wound Management

An important part of the management of wounds is prevention of tetanus. The physician is often faced with decisions concerning use of tetanus toxoid for active protection and tetanus antitoxin or tetanus immune globlin (human) for passive protection. The available evidence demonstrates that primary immunization with tetanus toxoid (initial doses plus the reinforcing dose) provides a longlasting basis for active protection against tetanus. Passive protection need be considered only for the individual without a valid history of at least one injection of tetanus toxoid; indeed, there is evidence that persons who have received a single dose will respond adequately to a single booster dose, even after an interval of several years.

The following outline summarizes recommendations for the use of active and passive tetanus immunization in wound management:

1. Primary immunization or booster dose less than one year prior to injury: a. No tetanus prophylaxis required.
2. Primary immunization or most recent booster more than one year prior to injury:
a. Td** - The recommended single dose intramuscularly or subcutaneously.
3. Incompletely immunized:
a. Complete primary immunization (See Dosage and Schedules).
4. Unimmunized:
a. Initiate primary immunization (See Dosage and Schedules).
b. The decision to use concomitant passive prophylaxis will depend upon medical judgment after evaluating such factors as location, type and severity of the wound, degree and kind of contamination and the time elapsed between injury and medical attention. If passive therapy is elected, tetanus immune globulin (human) is strongly preferred to equine or bovine antiserum. It offers the advantages of longer protection and freedom from undesirable reactions. The currently recommended prophylactic dose of tetanus immune globulin (human) is 250 units for wounds of average severity. When used concurrently, toxoid and antitoxin should be given in separate syringes and at separate sites.
[^1]Should tetanus immune globulin (human) be unavailable, equine or bovine antitoxin may be used. The usual dose is from 3,000 to 5,000 units. Administration should always be preceded by careful screening for sensitivity. The following schema is derived from recommendations by the Committee on Trauma, American College of Surgeons: ${ }^{1}$

Determining Sensitivity to Equine or Bovine Serum History

1. Inquire specifically regarding previous injections of equine or bovine serum. Sensitivity frequently develops after the first injection of animal serum. If an adverse reaction occurred previously following either serum, do not consider its further use. (The alternative product can then be subjected to the sensitivity testing described below.)
2. Question the patient with regard to sensitivity to horse dander or beef products. Either may be considered a signal for caution.

Skin Tests (Equine or Bovine Antitoxin)

1. Inject intracutaneously $0.02-0.03 \mathrm{ml}$. of $1: 10$ normal saline dilution of the tetanus antitoxin.* The area of infiltration should be about the size of the head of a pin. A control test with the same volume of saline should be done for comparison.
2. In 15 minutes or less, a positive reaction will be manifested by a hive-like wheal and erythema. Thelarger the reaction, the greater the sensitivity. A 0.5 cm . wheal may represent a nonspecific response which may be confirmed by the presence of a comparable reaction to the saline alone.

Eye Tests

1. Place a drop of $1: 10$ normal saline dilution of the tetanus antitoxin in the conjunctival sac of one eye at the time of the skin test using the same material is performed. A drop of normal saline in the other eye can serve as a useful control.
2. Within 30 minutes, a positive reaction will be indicated by redness of the conjunctiva.
3. If no conjunctival reaction occurs following use of the antitoxin, the eye test may be considered negative.
4. After the result is apparent, a drop or two of epinephrine $1: 1000$ should be instilled in the test eye.

Interpretations

1. If a positive reaction occurs with skin and/or eye test, the animal serum employed in the testing should not be administered. Desensitization should not be attempted. The physician may either test for sensitivity to the other animal serum or endeavor to obtain tetanus immune globulin (human).
2. Following a positive reaction to one animal serum, the other should be subjected to the same skin and eye tests before considering its use in tetanus prophylaxis.
3. If history and both skin and eye tests are negative, the likelihood of a reaction to a standard dose of the animal serum tested is small, and it may be administered.*
(As an additional precaution encouraged by some, 0.1 ml . of a $1: 10$ normal saline dilution of antitoxin may first be injected subcutaneously.* If no untoward reaction is observed in 30 minutes, the prophylactic dose may be given.)
*Wherever animal serum is administered parenterally either for test or treatment, a syringe with 1 ml . of epinephrine 1:1000 should always be immediately available.

REFERENCE:

${ }^{1}$ Early Care of Acute Soft Tissue Injuries. The Committee on Trauma of the American College of Surgeons. W. B. Saunders Co., Philadelphia and London, 1965, pp. 25-26.

SURVEILLANCE SUMMARY
 SALMONELLOSIS - August, September, and October 1966

During the months of August, September, and October 1966, the reported numbers of human isolations of salmonellae were $2,408,1,824$, and 1,721 respectively. The cumulative number of human isolations for the first 10 months of 1966 is 16,460 , representing a 5.9 percent decrease from the total of 17,495 reported for the same period in 1965. The seasonal pattern continues to be similar to that observed in 1965. The age and sex distribution is similar to that in previous months. The seven most frequently reported human serotypes for the

3 months are listed in Table 1; these accounted for $65.8,66.6$, and 64.8 percent, respectively, of all isolations in each month.

The seven most frequently reported salmonellae serotypes from nonhuman sources for August, September, and October are listed in Table 2. The most prominent nonhuman sources for these months were turkeys, chickens, and livestock feed.
(Reported by the Salmonella Unit, Bacteriology Section, Epidemiology Branch, CDC.)

Table 2
The Seven Mast Frequently Reparted Serotypes from Human Sources August, September and October 1966

Serotype	August			September			October		
	Rank	Number	Percent	Rank	Number	Percent	Rank	Number	Percent
S. typhi-murium \mathcal{E} S. typhi-murium var. copenhagen	1	778	32.3	1	560	30.7	1	525	30.5
S. heidelberg	2	194	8.1	2	157	8.6	2	140	8.1
S. newport	3	186	7.7	5	115	6.3	3	129	7.5
S. infantis	4	125	5.2	4	120	6.6	5	91	5.3
S. enteritidis	5	107	4.4	3	130	7.1	4	104	6.0
S. thompson	6	98	4.1	7	44	2.4			
S. saint-paul	7	96	4.0			2.5	7	56	3.3
S. blockley				7	44	2.4			
S. typhi							6	70	4.1
Total		1,584	65.8		1,215	66.6		1,115	64.8
Total all serotypes		2,408			1,824			1,721	

Table 3
The Seven Most Commonly Reported Serotypes from Nonhuman Sources August, September and October 1966

Serotype	August			September			October		
	Rank	Number	Percent	Rank	Number	Percent	Rank	Number	Percent
S. typhi-murium \& S. typhi-murium var. copenhagen	1	152	17.6	1	76	13.9	2	60	8.4
S. heidelberg	2	78	9.0	2	70	12.8	1	113	15.8
S. anatum	3	48	5.6	3	38	7.0			
S. schwarzengrund	4	47	5.4				6	27	3.8
S. tennessee	5	44	5.1						
S. derby	6	38	4.4						
S. thompson	7	38	4.4				5	28	3.9
S. infantis				4	31	5.7	4	49	6.9
S. saint-paul				5	30	5.5	7	26	3.6
S. montevideo				6	26	4.8	3	53	7.4
S. cubana				7	25	4.6			
Total		445	51.5		296	54.3		356	49.8
Total all serotypes		863			546			713	
	Most Common Sources of Nonhuman Isolations								
Turkey	1	201	23.3	1	152	27.8	1	218	30.6
Chicken	2	152	17.6	2	89	16.3	2	128	18.0
Livestock Feed	3	61	7.1	3	52	9.5	3	47	6.6
Powdered Milk	4	57	6.6						
Frozen Eggs	5	32	3.7				4	44	6.2
Sewage				4	38	7.0			
Animal Feed				5	23	4.2			
Porcine							5	41	5.8

CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
DECEMBER 3, 1966 AND DECEMBER 4, 1965 (48th WEEK)

AREA			BRUCELLOSIS	ENCEPHALITIS			DIP HTHERIA		HEPATITIS		
	ASEPTIC MENINGITIS			Primary including unsp. cases		PostInfectious			Serum	Infectious	Both Types
	1966	1965	1966	1966	1965	1966	1966	1965	1966	1966	1965
UNITED STATES...	52	47	12	37	30	11	-	-	35	733	751
NEW ENGLAND.	4	1	-	2	-	-	-	-	-	28	40
Maine.	-	-	-	-	-	-	-	-	-	3	5
New Hampshire......	-	-	-	-	-	-	-	-	-	-	1
Vermont............	-	-	-	-	-	-	-	-	-	1	-
Massachusetts......	2	1	-	1	-	-	-	-	-	13	19
Rhode Is land........	1	-	-	1	-	-	-	-	-	4	7
Connecticut........	1	-	-	-	-	-	-	-	-	7	8
MIDDLE ATLANTIC......	19	8	-	10	6	1	-	-	16	113	203
New York City......	4	4	-	6	1	-	-	-	13	29	21
New York, Up-State.	1	2	-	-	2	1	-	-	2	21	112
New Jersey.........	3	2	-	4	2	-	-	-	1	29	22
Pennsylvania.......	11	-	-	-	1	-	-	-	-	34	48
EAST NORTH CENTRAL...	3	5	-	6	5	2	-	-	1	133	120
Ohio...............	-	2	-	4	1	-	-	-	-	16	25
Indiana.............	-	1	-	-	1	-	-	-	-	13	8
Illinois...........	1	1	-	1	1	-	-	-	-	25	25
Michigan...........	1	1	-	-	1	2	-	-	1	54	56
Wisconsin..........	1	-	-	1	1	-	-	-	-	25	6
WEST NORTH CENTRAL...	-	2	6	-	1	1	-	-	-	26	43
Mínnesota..........	-	2	4	-	-	1	-	-	-	7	6
Iowa................	-	-	2	-	-	-	-	-	-	12	6
Missouri...........	-	-	-	-	-	-	-	-	-	4	15
North Dakota.......	-	-	-	-	-	-	-	-	-	-	4
South Dakota.......	-	-	-	-	1	-	-	-	-	-	-
Nebraska...........	-	-	-	-	-	-	-	-	-	-	3
Kansas..............	-	-	-	-	-	-	-	-	-	3	9
SOUTH ATLANTIC.......	3	3	2	7	7	1	-	-	2	60	61
Delaware....	1	2	-	-	-	-	-	-	-	2	
Maryland............	-	-	-	-	1	1	-	-	1	20	13
Dist. of Columbia..	-	-	-	-	-	-	-	-	-	-	2
Virginia...........	-	-	2	-	-	-	-	-	-	7	7
West Virginia......	1	-	-	-	-	-	-	-	-	4	11
North Carolina.....	1	-	-	2	1	-	-	-	-	4	14
South Carolina.....	-	-	-	-	-	-	-	-	-	1	2
Georgia.............	I	-	-	-	-	-	-	-	-	12	1
Florida............	1	1	-	5	5	-	-	-	1	10	11
EAST SOUTH CENTRAL...	12	5	-	4	-	1	-	-	1	71	58
Kentucky...........	-	5	-	-	-	-	-	-	-	24	30
Tennessee..........	4	-	-	1	-	1	-	-	1	26	21
Alabama............	2	-	-	-	-	-	-	-	-	12	3
Mississippi........	6	-	-	3	-	-	-	-	-	9	4
WEST SOUTH CENTRAL...	1	6	1	2	1	2	-	-	2	55	44
Arkansas...........	-	-	1	1	1	-	-	-	-	3	10
Louisiana..........	1	-	-	-	-	-	-	-	2	3	6
Oklahoma............	-	-	-	-	-	-	-	-	-	8	-
Texas..............	-	6	-	1	-	2	-	-	-	41	28
mountain...............	3	4	-	-	1	-	-	-	-	82	35
Montana.	-	-	-	-	1	-	-	-	-	11	2
Idaho..............	-	-	-	-	-	-	-	-	-	24	1
Wyoming.	-	1	-	-	-	-	-	-	-	2	2
Colorado...........	-	-	-	-	-	-	-	-	-	6	2
New Mexico.........	-	-	-	-	-	-	-	-	-	26	23
Arizona............	3	2	-	-	-	-	-	-	-	9	4
Utah...............	3	1	-	-	-	-	-	-	-	3	1
Nevada..............	-	-	-	-	-	-	-	-	-	1	-
PACIFIC...............	7	13	3	6	9	3	-	-	13	165	147
Washington.........	-	4	T	-	2	-	-	-	-	22	11
Oregon..............	-	1	-	1	7	-	-	-	-	27	16
California.........	7	8	3	5	7	3	-	-	13	115	101
Alaska.............	-	-		-	-	-	-	-	-	1	14
Hawai1.	-	-	-	-	-	-	-	-	-	-	
Puerto Rico...........	2	-	-	1	1	-	-	3	-	23	31

CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES

FOR WEEKS ENDED
DECEMBER 3, 1966 AND DECEMBER 4, 1965 (48th WEEK) - CONTINUED

AREA	MEASLES (Rubeola)			MENINGOCOCCAL INFECTIONS, TOTAL			POLIOMYELITIS				RUBELIA			
				Total	Paralytic									
	1966	Cumulative					1966	Cumulative		1966	1965	1966	$\begin{gathered} \text { Cumulative } \\ 1966 \end{gathered}$	1966
		1966	1965	1966	1965									
UNITED STATES...	1,472	197,830	253,379	48	3,178	2,801	3	-	3	88	376			
NEW ENGLand.	27	2,518	37,192	3	147	144	-	-	-	-	54			
Maine..............	11	285	2,914	-	12	18	-	-	-	-	12			
New Hampshire......	-	80	383	-	9	9	-	-	-	-	-			
Vermont............	6	323	1,387	-	4	8	-	-	-	-	-			
Massachusetts......	4	825	19,372	1	62	54	-	-	-	-	15			
Rhode Island.......	-	73	3,952	-	17	17	-	-	-	-	3			
Connecticut........	6	932	9,184	2	43	38	-	-	-	-	24			
Middle atlantic......	65	18,413	16,714	9	413	375	1	-	1	1	9			
New York City......	6	8,360	3,052	-	64	61	-	-	-	-	9			
New York, Up-State.	18	2,621	4,348	5	111	107	-	-	-	-	-			
New Jersey.........	34	1,968	3,187	1	119	100	-	-	-	-	-			
Pennsylvania.......	7	5,464	6,127	3	119	107	1	-	1	1	-			
EAST NORTH CENTRAL...	149	69,980	59,883	7	502	423	-	-	-	7	84			
Ohio...............	29	6,444	9,033	2	146	117	-	-	-	2	5			
Indiana............	5	5,787	2,255	3	88	48	-	-	-	1	13			
Illinois...........	13	11,486	3,395	-	89	113	-	-	-	3	15			
Michigan............	63	14,987	27,449	1	128	97	-	-	-	1	14			
Wisconsin..........	39	31,276	17,751	1	51	48	-	-	-	-	37			
WEST NORTH CENTRAL...	89	9,128	17,211	4	165	137	-	-	-	1	15			
Minnesota..........	5	1,674	760	-	35	32	-	-	-	1	1			
Iowa.................	45	5,408	9,235	-	22	12	-	-	-	-	9			
Missouri............	1	538	2,657	1	64	54	-	-	-	-	1			
North Dakota.......	37	1,311	3,982	-	11	13	-	-	-	-	4			
South Dakota.......	-	40	115	1	6	3	-	-	-	-	-			
Nebraska............	1	157	462	2	11	10	-	-	-	-	-			
Kansas..............	NN	NN	NN	-	16	13	-	-	-	-	-			
SOUTH ATLANTIC.......	79	15,883	26,319	5	536	530	-	-	-	2	17			
Delaware...........	I	263	510	-	5	11	-	-	-	-	-			
Maryland............	2	2,123	1,216	-	49	53	-	-	-	-	1			
Dist. of Columbia..	2	390	110	-	14	11	-	-	-	-	-			
Virginia...........	9	2,239	4,190	-	63	71	-	-	-	-	3			
West Virginia......	13	5,494	14,561	4	45	27	-	-	-	1	10			
North Carolina.....	20	621	411	1	134	110	-	-	-	-	-			
South Carolina.....	2	663	1,148	-	54	65	-	-	-	-	1			
Georgia............	1	241	627	-	77	61	-	-	-	1	-			
Florida............	29	3,849	3,546	-	95	121	-	-	-	-	2			
EAST SOUTH CENTRAL...	229	20,397	15,143	6	275	213	-	-	-	4	10			
Kentucky...........	32	4,809	3,195	-	95	83	-	-	-	-	5			
Tennessee..........	67	12,607	8,450	-	92	68	-	-	-	-	4			
Alabama............	10	1,762	2,351	1	59	37	-	-	-	1	1			
Mississippi........	120	1,219	1,147	5	29	25	-	-	-	3	-			
WEST SOUTH CENTRAL...	358	26,106	31,706	7	425	351	2	-	2	70	4			
Arkansas...........	-	982	1,088	-	36	18	-	-	-	1	4			
Louisiana..........	-	99	120	2	161	192	-	-	-	1	-			
Oklahoma...........	40	578	233	1	22	21	-	-	-	1	-			
Texas..	318	24,447	30,265	4	206	120	2	-	2	67	-			
mountain.	109	12,497	20,586	-	94	100	-	-	-	-	20			
Montana............	13	1,903	3,874	-	5	2	-	-	-	-	3			
Idaho...............	5	1,676	2,977	-	5	13	-	-	-	-	-			
Wyoming.	14	233	861	-	6	5	-	-	-	-	-			
Colorado...........	15	1,407	5,935	-	49	27	-	-	-	-	7			
New Mexico.........	51	1,210	688	-	10	11	-	-	-	-	-			
Arizona............	6	5,351	1,413	-	13	20	-	-	-	-	9			
Utah................	5	662	4,616	-	1	17	-	-	-	-	1			
Nevada.	-	55	222	-	5	5	-	-	-	-	-			
PACIFIC..............	367	22,908	28,625	7	621	528	-	-	-	3	163			
Washington.	198	4,734	7,461	4	52	45	-	-	-	2	90			
Oregon..............	125	2,338	3,422	-	40	36	-	-	-	-	47			
California.........	31	15,059	13,490	3	507	421	-	-	-	1	22			
Alaska.............	9	615	203	-	18	18	-	-	-	-	3			
Hawaii............	4	162	4,049	-	4	8	-	-	-	-	1			
Puerto Rico..........	71	3,356	2,780	-	17	11	-	-	-	1	-			

CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
DECEMBER 3, 1966 AND DECEMBER 4, 1965 (48th WEEK) - CONTINUED

AREA	STREPTOCOCCAL SORE THROAT \& SCARLET FEVER	TETANUS		TULAREMTA		TYPHOID		TYPHUS FEVERTICK-BORNE(Rky. Mt. Spotted)		RABIES IN ANIMALS	
	1966	1966	$\begin{aligned} & \text { Cum. } \\ & 1966 \end{aligned}$	1966	$\begin{aligned} & \text { Cum. } \\ & 1966 \end{aligned}$	1966	$\begin{aligned} & \hline \text { Cum. } \\ & 1966 \end{aligned}$	1966	$\begin{aligned} & \text { Cum. } \\ & 1966 \end{aligned}$	1966	$\begin{aligned} & \text { Cum. } \\ & 1966 \end{aligned}$
UNITED States...	9,107	9	184	2	162	6	354	-	242	69	3,732
NEW ENGLAND.	1,206	-	4	-	1	-	13	-	3	2	86
Maíne...............	63	-	-	-	-	-	-	-	-	1	26
New Hampshire.....	24	-	-	-	-	-	-	-	-	1	30
Vermont.............	2	-	-	-	-	-	-	-	-	-	25
Massachusetts......	160	-	2	-	1	-	9	-	1	-	4
Rhode Island.......	92	-	-	-	-	-	-	-	-	-	-
Connecticut........	865	-	2	-	-	-	4	-	2	-	1
MIDDLE ATLANTIC......	421	1	15	-	-	-	57	-	47	4	221
New York City......	10	-	5	-	-	-	25	-	-	-	1
New York, Up-State.	358	-	2	-	-	-	12	-	13	4	204
New Jersey.........	NN	1	3	-	-	-	8	-	15	-	-
Pennsylvania.......	53	-	5	-	-	-	12	-	19	-	16
EAST NORTH CENTRAL...	595	1	21	-	20	2	45	-	20	9	479
Ohio...............	98	1	5	-	3	-	21	-	9	3	200
Indiana............	75	-	4	-	10	1	5	-	-	2	111
Illinois...........	-	-	4	-	6	-	6	-	11	2	72
Michigan...........	239	-	6	-	-	1	7	-	-		42
Wisconsin.........	183	-	2	-	1	-	6	-	-	1	54
WEST NORTH CENTRAL...	308	-	15	-	19	1	34	-	4	14	852
Minnesota..........	6	-	3	-	1	-	1	-	-	3	203
Iowa...............	139	-	2	-	-	-	5	-	-	2	157
Missouri...........	14	-	8	-	10	1	18	-	3	1	245
North Dakota.......	118	-	-	-	-	-	1	-	-	4	53
South Dakota.......	23	-	-	-	4	-	-	-	-	2	105
Nebraska...........	-	-	1	-	2	-	2	-	-	2	28
Kansas.............	8	-	1	-	2	-	7	-	1	-	61
SOUTH AtLANTIC.......	873	2	35	1	13	-	67	-	110	10	477
Delaware...........	11	-	-	-	-	-	1	-	2	-	-
Maryland...........	116	-	3	1	3	-	12	-	26	-	3
Dist. of Columbia..	5	-	-	-	-	-	2	-	-	-	-
Virginia...........	288	-	6	-	2	-	16	-	31	2	240
West Virginia......	245	-	-	-	1	-	1	-	-	2	58
North Carolina.....	13	-	4	-	3	-	6	-	27	-	4
South Carolina.....	29	-	2	-	1	-	13	-	5	-	-
Georgia............	10	-	8	-	3	-	4	-	19	2	102
Florida............	156	2	12	-	-	-	12	-	-	4	70
EAST SOUTH CENTRAL. .	1,550	1	26	-	24	1	44	-			479
Kentucky...........	- 24	-	2	-	2	-	10	-	9	6	116
Tennessee...........	1,070	-	7	-	14	-	22	-	25	8	321
Alabama............	171	-	8	-	4	-	6	-	7	-	20
Mississippi........	285	1	9	-	4	1	6	-	2	-	22
WEST SOUTH CENTRAL...	708	3	45	1	73	-	34	-	10	8	736
Arkansas...........	-	-	4	1	56	-	4	-	2	2	82
Louisiana..........	2	2	12	-	4	-	10	-	-	2	52
Oklahoma............	81	-	3	-	7	-	9	-	7	2	182
Texas...	625	1	26	-	6	-	11	-	1	2	420
mountain.	1,723	-	2	-	9	-	17	-	4	1	96
Montana.............	67	-	-	-	2	-	-	-	4	-	7
Idaho.	72	-	-	-	-	-	-	-	-	-	-
Wyoming............	63	-	-	-	3	-	-	-	1	-	-
Colorado...........	1,095	-	2	-	-	-	4	-	2	-	18
New Mexico.........	287	-	-	-	1	-	2	-	1	1	17
Arizona............	52	-	-	-	1	-	5	-	-		42
Utah...............	76	-	-	-	2	-	5	-	-	-	3
Nevada.	11	-	-	-	-	-	1	-	-	-	9
PACIFIC..............	1,723	1	21	-	3	2	43	-	1	7	306
Washington.........	573	-	-	-	-	2	13	-		7	15
Oregon.............	36	-	1	-	-	-	1	-	-	-	4
California.........	1,033	1	20	-	3	-	27	-	1	7	287
Alaska.............	18	-	-	-	-	-	2	-	$-$	7	-
Hawaii.............	63	-	-	-	-	-	2	-	-	-	
Puerto Rico..........	2	-	53	-	-	1	18	-	-	-	18

(By place of occurrence and week of filing certificate. Excludes feral deaths)

Area	All Causes		Pneumonia and Influenza All Ages	Under 1 year All Causes	Area	All Causes		Pneumonia and Influenza All Ages	Under 1 year A11 Causes
	$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	65 years and over				Al1 Ages	65 years and over		
NEW ENGLAND:	770	456	30	26	SOUTH ATLANTIC:	1,363	702	62	102
Boston, Mass.---------	237	131	6	6	Atlanta, Ga	138	58	6	13
Bridgeport, Conn.-----	47	29	4	3	Baltimore, Md.---------	288	144	10	14
Cambridge, Mass.------	32	22	-	-	Charlotte, N. C.----.--	72	27	3	5
Fall River, Mass.----	36	25	-	1	Jacksonville, Fla.-----	85	47	3	2
Hartford, Conn.-------	60	36	3	4	Miami, Fla.-----.-.-.--	109	64	-	7
Lowell, Mass.-	38	19	1	-	Norfolk, Va,-----------	64	29	10	4
Lynn, Mass.-----------	25	13	1	1	Richmond, Va.----------	88	43	4	-
New Bedford, Mass.---	24	14	1	-	Savannah, Ga.--..------	44	30	2	3
New Haven, Conn.------	41	30	-	-	St. Petersburg, Fla.---	102	78	8	1
Providence, R. I.-.-.-	69	36	-	6	Tampa, F1a.-----------	79	51	5	1
Somerville, Mass.----	17	9	-	-	Washington, D. C....-.-	249	105	10	52
Springfield, Mass.----	49	30	7	2	Wilmington, Del.-------	45	26	1	-
Waterbury, Conn.------	36	25	-	1					
Worcester, Mass.------	59	37	7	2	EAST SOUTH CENTRAL:	649	345	24	35
					Birmingham, Ala.-------	99	60	2	2
MIDDLE ATLANTIC:	3,673	2,131	129	174	Chattanoỏga, Tenn.--.--	60	22	1	5
Albany, N. Y.---------	44	26	2	5	Knoxville, Tenn.-------	41	23	2	3
Allentown, Pa.--------	34	21	2	-	Louisville, Ky.--------	112	72		5
Buffalo, N. Y.--------	149	92	6	5	Memphis, Tenn.-.-.------	155	76	2	8
Camden, N. J.--.------	61	39	4	2	Mobile, Ala.-.---------	49	25	-	4
Elizabeth, N. J.------	53	34	3	1	Montgomery, Ala.-------	40	21	3	3
Erie, Pa.-------------	53	25	4	6	Nashville, Tenn.-------	93	46	5	5
Jersey City, N. J.----	77	43	-	4					
Newark, N. J.---------	102	53	8	3	WEST SOUTH CENTRAL:	1,232	629	40	85
New York City, N. Y.--	1,879	1,089	52	101	Austin, Tex.-----------	56	34	5	3
Paterson, N. J.-------	54	24	2	7	Baton Rouge, La.-------	69	38	3	3
Philadelphia, Pa.-	512	304	13	17	Corpus Christi, Tex.---	26	13	1	3
Pittsburgh, Pa.-------	243	126	5	10	Dallas, Tex	140	74	11	14
Reading, Pa.----------	54	31	3	-	el Paso, Tex.	33	18	2	3
Rochester, N. Y.------	81	50	9	4	Fort Worth, Tex.-------	68	36	1	-
Schenectady, N. Y.	28	21	2		Houston, Tex.----------	248	116	5	19
Scranton, Pa.---------	53	34	1	2	Little Rock, Ark.------	49	28	1	3
Syracuse, N. Y.-------	66	37	1	-	New Orleans, La..-.-.--	157	67	4	12
Trenton, N. J.--------	44	22	2	4	Oklahoma City, Okla.---	105	49	-	8
Utica, N. Y.----------	37	27	6	-	San Antonio, Tex.------	146	80	3	11
Yonkers, N. Y.	49	33	4	3	Shreveport, La.--------	57	32	-	2
					Tulsa, Okla.	78	44	4	4
EAST NORTH CENTRAL:	2,714	1,550	80	167					
Akron, Ohio-----...----	73	35	-	11	MOUNTAIN:	461	253	22	33
Canton, Ohio----------	36	18	1	5	Albuquerque, N. Mex.---	60	28	6	6
Chicago, 111.-----.-.-	786	426	35	55	Colorado Springs, Colo.	25	17	2	4
Cincinnati, Ohio------	168	107	3	6	Denver, Colo.----------	132	69	6	9
Cleveland, Ohio--.---	232	124	3	17	Ogden, Utah-------------	14	11	-	
Columbus, Ohio---.----	118	61	2	8	Phoenix, Ariz.--------	104	57	5	8
Dayton, Ohio---------	63	36	-	3	Pueblo, Colo.----------	17	11	2	4
Detroit, Mich.--------	336	195	5	14	Salt Lake City, Utah---	56	29	-	4
Evansville, Ind.	46	29	2	1	Tucson, Ariz.---------	53	31	1	1
Flint, Mich.	61	30	4	4					
Fort Wayne, Ind.------	45	29	3	4	PACIFIC:	1,748	1,038	38	75
Gary, Ind.---...------	30	12	-	4	Berkeley, Calif.--------	22	15 35	1	-
Grand Rapids, Mich.---	43	32	3	2	Fresno, Calif.---------	65	35	-	4
Indianapolis, Ind.----	192	114	5	14	Glendale, Calif.-------	42	28	1	1
Madison, Wis.---------	31	15	-	-	Honolulu, Hawaif-------	44	19	1	4
Milwaukee, Wis.-------	141	90	1	5	Long Beach, Calif.----	88	51	-	3
Peoria, Ill.----------	44	28	1	3	Los Angeles, Calif.---	554	334	18	28
Rockford, Ill.-------	31	22	3	2	Oakland, Calif.--------	125	75	-	3
South Bend, Ind.	60	36	3	4	Pasadena, Calif.---.---	25	19	-	3
Toledo, Ohio----------	119	78	5	2	Portland, Oreg.--------	144	85	3	3
Youngstown, Ohio-----	59	33	1	3	Sacramento, Calif.-...--	76	46	-	6
					San Diego, Calif.------	82	43	$\overline{-}$	7
West north central:	911	562	32	46	San Francisco, Calif.--	202	113	2	6
Des Moines, Iowa------	85	55	2	4	San Jose, Calif.-------	37 132	24	4	2
Kuluth, Minn.---------	25	18	1	1	Seattle, Wash.---------	132	79	5	4
Kansas City, Kans	44 139	21	4	6	Spokane, Wash.--------------	70 40	45	2	3
Lincoln, Nebr.-.--------	139	90	5	6	Tacoma, Wash.				1
Minneapolis, Minn.----	37 108	23 70	2	3 9	Total	13,521	7,666	457	743
Cmaha, Nebr.-.--------	98	64	2	3					
St. Louis, Mo.--------	277	157	9	11		ative	tals		
St. Paul, Minn.--...--	60	40	2	3	including reporte	correct	ns for	revious we	
Wichita, Kans.--------	38	24	4	-					
					All Causes, All Ages -- All Causes, Age 65 and		------	- 600,2	
					Pneumonia and Influenza,	11 Age		24,54	
*stimate - based on av	e per	of div	ional to		All Causes, Under 1 Year	f Age-		32,06	

QUARANTINE MEASURES

Immunization Information for International Travel

1965-66 edition - Public Health Service Publication No. 384

Section 2, page 13

Delete the information under Typhoid and Paratyphoid fever.

Insert:

Typhoid Fever - Immunization is recommended for foreign travel as a personal and public health precaution. Standard course: 2 injections at least 4 weeks apart. A booster dose at 3 year intervals while in an infected area. The basic series need not be completed at any time even if more than 3 years has elapsed since primary immunization or the last booster dose. Infants may be immunized from 6 months of age. (For typhoid vaccine dosage as recommended by the PHS Advisory Committee on Immunization Practices see Morbidity and Mortality Report, Vol. 15, No. 29, July 23, 1966).

All information concerning paratyphoid fever vaccination (pages 20-71) should be deleted.

Section 2, page 15

Under Plague, delete "The standard course need not be repeated at any time."

Insert:

Persons vaccinated previously need only 2 injections spaced at a 30 -day interval.

Health Information for Travel Leaflets
 748, 748B through 748D

748 - Travel in Europe
748B - Travel in Mexico, Central and South America and the Caribbean
748 C - Travel in Asia, Japan, Indonesia, Philippines, Australia and New Zealand
748D - Travel in Africa

Delete all reference to typhoid and paratyphoid fever and insert the above information concerning typhoid fever.

THE MORBIDITY AND MORTALITY WEEKLY REPORT, WITH A CIRCULATION OF 15,600 , IS PUBLISHED. AT THE COMMUNICABLE DISEASE CENTER, ATLANTA, GEORGIA

CHIEF, COMMUNICABLE DISEASE CENTER DAVID J.SENCER, M.D. CHIEF, EPIDEMIOLOGY BRANCH A.D. LANGMUIR M.D. ACTING CHIEF, STATISTICS SECTION IDA L. SHERMAN, M.S.

IN ADDITION TO THE ESTABLISHED PROCEDURES FOR REPORTING MORBIDITY AND MORTALITY THE COMMUNICABLE DISEASE CENTER WELCOMES ACCOUNTS OF INTERESTING OUTBREAKS OR CASE INVESWELCOMES ACCOUNTS OF INTERESTING OUTBREAKS WHICH ARE OF CURRENT INTEREST TO HEALTH OFFICIALS AND WHICH ARE DIRECTLY RELATED TO THE CONTROL OF COMMUNICABLE DISEASES. SUCH COMMUNICATIONS SHOULD BE ADDRESSED TO:

THE EDITOR
MORBIDITY AND MORTALITY WEEKLY REPORT
MORBIDITY AND MORTALITY WEEK
COMMUNICABLE DISEASE CENTER
COMMUNICABLE DISEASE CE
ATLANTA, GEORGIA 30333
NOTE: THE DATA IN THIS REPORT ARE PROVISIONAL AND ARE BASED ON WEEKLY TELEGRAMS TO THE CDC BY THE INDIVIDUAL IATE HEALTH DEPARTMENTS. THE REPORTING WEEK CONCLUDES ON A NATIONAL GASIS ARE RELEASE.D ON THE SUCCEEDING FRIDAY.

[^0]: ${ }^{\circ} \mathrm{Td}$ is considered the agent of choice for immunization at ages over 6 years on the basis of data regarding its effectiveness in primary immunization of older children and adults and because of increasing reactions to full doses of diphtheria toxoid with age. The use of this preparation obviates the need for Schick or Moloney testing prior to immunization.

[^1]: **If there is any reason to suspect hypersensitivity to the diphtheria component, tetanus toxoid (T) should be substituted for Td (adult type).

